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Spherical piston problem in water 
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In  this paper, we study the propagation of a shock wave in water, produced 
by the expansion of a spherical piston with a finite initial radius. The piston 
path in the x, t plane is a hyperbola. We have considered the following two cases: 
(i) the piston accelerates from a zero initial velocity and attains a finite velocity 
asymptotically as t tends to infinity, and (ii) the piston decelerates, starting 
from a finite initial velocity. Since an analytic approach to this problem is 
extremely difficult, we have employed the artificial viscosity method of von 
Neumann & Richtmyer after examining its applicability in water. For the 
accelerating piston case, we have studied the effect of different initial radii of 
the piston, different initial curvatures of the piston path in the x, t plane and the 
different asymptotic speeds of the piston. The decelerating case exhibits the 
interesting phenomenon of the formation of a cavity in water when the decelera- 
tion of the piston is sufficiently high. We have also studied the motion of the 
cavity boundary up to 550 cycles. 

1. Introduction 
In  the present paper we have studied the compression waves produced in 

water by the non-uniform expansion of a spherical piston for different piston 
paths in the z, t  plane both when it accelerates and when it decelerates. The 
problem of the uniform expansion of a sphere, with zero initial radius, in air 
was solved by Taylor (1946) by numerical integration of the ordinary differential 
equations in the similarity variable. Yeh (1962, p. 1431) extended these results 
for water. Naugolnykh (1 966) obtained an approximate analytical solution for 
this problem, retaining the most dominant non-linear term. This solution for 
sinall Mach numbers is in good agreement with Taylor’s solution. Lighthill 
(1948) has discussed this problem for a gas for both spherical and cylindrical 
pistons while illustrating a general method for solving a class of aerodynamic 
problems involving small disturbances which may include weak shocks in the 
flow. He has determined the order of the shock strength in terms of the Mach 
number of the piston and finds that the shock strength is extremely small for 
small piston Mach numbers, confirming earlier results of Taylor (1946). In this 
paper he commented that the solution of this problem, obtained by expanding 
the velocity potential in the powers of some small parameters, say the Mach 
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number of the piston, exhibits certain weaknesses, namely: (i) the solution does 
not converge near the leading characteristic, though it gives good results else- 
where; (ii) in the expansion procedure, the disturbance is always confined with- 
in a sphere whose surface expands with the sound speed in the undisturbed 
medium; and (iii) across this sphere the velocity and pressure remain continuous 
up to the first two terms in the expansion so that there is no possibility of fitting 
a shock. 

In  a later paper, Lighthill (1949) has overcome the difficulties of the diver- 
gence of the solution near the leading characteristic by the well-known PLK 
method which involves the expansion of the dependent as well as the independent 
variables in terms of the powers of the small expansion parameter. 

In  the present paper we have studied this problem in water in a general way, 
assuming the initial radius of the piston to be finite and the piston path to be a 
hyperbola in the 2, t plane. We consider both cases when the piston accelerates 
starting from zero initial velocity and when it decelerates from a finite initial 
velocity. Analytic approach to this problem is extremely difficult and we 
therefore have to employ numerical techniques to solve it. Since, for water, the 
energyequation isnot used, we cannot use the method of artificial heat-conduction 
(Sachdev & Prasad 1966) evolved by us. We therefore use the method of arti- 
ficial viscosity given by von Neumann & Richtmyer (1950). We examine the 
applicability of this method in the case of water and find that, though the thick- 
ness of the shock transition region depends on the shock strength, it lies in a small 
range so that this method can be successfully employed in the present case. The 
corresponding problem of waves produced by the non-uniform motion of a 
cylindrical piston has been worked out by Pandey & Prasad (1969). 

2. Artificial viscosity term for water 
We briefly discuss the applicability of the artificial viscosity term for water. 

Using the notations of von Neumann & Richtmyer and closely following their 
analysis, we have the following equation for the steady state solution, giving the 
shock transition region: 

which corresponds to equation (28) of von Neumann & Richtmyer. Here V is 
the specific volume, and V ,  are values of V ahead of and behind the shock re- 
spectively and w is the Lagrangian distance measured from the point where 

(2.3) 

In  establishing (2.1) we have used the equation of state for water, giving the 
pressure 

p = A V - r - B  with y =  7 (2.4) 
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instead of the energy equation (18) of von Neumann & Richtmyer. We can now 
show that, for 

O < V f < T < l ,  (2.5) 

1 < $(T ,V f )  < 7. (2.6) 

and V = V; are attained at w = wi and w = - w, respectively, If the values V = 

and 

where 

and the width of the shock wi + wr satisfies the inequalities 

Thus the shock thickness, though a function of the shock strength, lies in a 
fairly small interval and does not present any difficulty in numerical work. In 
dealing with problems for water, P remains close to unity and actual variation of 
wi + wf with shock strength is very small. 

Though in the above analysis we have taken only one integral value of 
y ( = 7))  we surmise that, even for other values of y, the artificial viscosity term is 
adequate. 

The system of difference equations for water is the same as in von Neumann & 
Richtmyer except that the energy equation (51) of their paper is replaced by 

(2.10) 

The stability conditions for this system of difference equations for rapidly 
varying perturbations are found to be 

in the normal region and 

(2.11) 

(2.12) 

in the shock region. 

3. Piston problem with variable speed of the piston 
We consider the motion produced by a spherical piston of initial radius X &  

the undisturbed water being at a constant pressure po and specific volume V,. 
We assume the piston path to be the hyperbola 
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where m2 is the initial piston velocity, m2 + 6ml is its final velocity and 6 is + 1 
or - 1  according as the piston accelerates or decelerates. The piston takes 
l/m,/3 units of time to attain the mean of initial and final asymptotic speed. 

On reducing the equation of motion to non-dimensional form with the help 
of the variables p,, p,,, c, (sound speed) and a characteristic length given by the 
distance travelled by the sound wave in the undisturbed state in a unit time, we 
obtain 

av x 2au 2 u v  
at= (5) ax x 3 

-+---- 
( C A X ) ~  q =  -___ 

2 v  

(3.4) 

(3.5) 

The equation of state and the velocity of the piston in the non-dimensional form 

B -  are given respectively by 

V y  
p = ---B (3.6) 

and (3.7) 

In  equations (3.2)-(3.7), for convenience of writing, we have dropped the bars 
from the flow variables, but the non-dimensional parameters have bars. 

The difference equations corresponding to (3.2)-(3.6) and to the boundary 
conditions are: 

Unft - ur-4 1 + qy$ -py-g - qy:; 
, (3.8) 

2 

At Ax 

(3.12) 

for n 1. (3.13) 1 
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We have considered two different situations regarding the initial piston speed. 
In  the first instance, the piston starts from zero initial velocity and accelerates 
(@i2 = 0, 6 = 1) so that we have the following initial conditions: 

In the second case, the piston starts with a finite initial speed ?Ti, and de- 
celerates according to (3.1) with 6 = - 1. To start the solution we obtained the 
initial distribution of flow variables by solving the steady-state equation (2.1) 
with the shock located at x = 2Ax, i.e. with the condition that the non- 
dimensional specific volume V = $( 1 + qr) at x = 2Ax. We obtain the value of 
qr from the Rankine-Hugoniot conditions, taking the particle velocity behind 
the shock to be i?& The error in obtaining the initial distribution of flow variables 
from a one-dimensional uniform solution for our spherical piston case is likely 
to  be very small. We also calculate the time which the shock takes to propagate 
from the piston position x = 0 to x = 2Ax for ?Ti2 = 1 ; we find this to be equal 
to 7-04 x 10-6. We assume the shock to move with uniform velocity during this 
interval. 

4. Numerical results and discussions 

stants and mesh size: 
We have carried out our computations with the following values of the con- 

c = 2, = 7, B = 3000, A = 3001, x = 0.00001. 

The various cases considered are given in table 1. 

Cases E, 

I 0  
I1 0 

I11 0 
IV 0 
v o  

VI 1 
VII 1 

VIII  1 

x; 
0.01 
0~0001 
0.001 
0.001 
0~0001 
0.001 
0.001 
0.001 

- 
7331 

0.23601 
0.97212 
0.97212 
0.97212 
1-63175 
0.23601 
0.60000 
1~00000 

s 5 

1 10,000 
1 30,000 
1 30,000 
1 15,000 
1 30,000 

- 1  30,000 
- 1 30,000 
- 1  30,000 

TABLE 1 

At/Ax 
0.5 
0.15 
0.2 
0.15 
0.05 
0.10 
0.10 
0.10 

Initial 
curvature 
of piston 

path 

2,360.1 
29,164 
29,164 
14,582 
48,952 
25,033 

6,364 
10,607 

Total time 
up to which 

result is 
obtained 

0.0003 
0*00011 
0~0001 
0-0002 
0~0001 
0.00026 
0.00016 
0.00055 

In  terms of the non-dimensional variables the initial curvature of the piston 

Tz E6 1. 

Table 1 shows that the initial curvature of the piston path is smallest in case I 
and largest in case V. The final asymptotic speed of the piston is nz,+m,& 

path in the x, t plane is 

(1 +%8)Q 
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so that after a long time the solution, in cases I to V, will tend to Taylor’s 
(1946) solution when i!Z; is much smaller than the distance traversed by the 
shock. 

Figures 1-3 give pressure, velocity and specific volume distribution versus 
Lagrangian distance after a different number of cycles for case I. The choice 
of our scale for pressure gives an illusion that the pressure curves end on p = 0; 
in fact they end on the line p = 1. In  this case, the initial piston radius, x& 
is very much greater than the total distance travelled by the shock or the piston 
so that the motion is approximately one-dimensional. The figures clearly show 
that the wave front is a shock which grows in strength as the speed of the piston 

6 

5 

m 
Y 

2 

1 

0 
0 4 8 12 16 20 24 

X - Z ~  in units of 10-6 

FIGURE 1. Pressure wer~u8 Lagrangian distance at various cycles (case I). 

increases. At any fixed time, pressure, density and velocity have the greatest 
value at  the piston and gradually decrease towards the shock. The final piston 
speed is subsonic with respect to undisturbed sound speed (El = 0.23601). 
In cases 11, I11 and IV, the final piston speed is almost sonic while it is super- 
sonic for case V as shown in the table. 

The initial radius of the piston is 0.0001 for case I1 and it is 0.001 for case 111. 
After 30 cycles in case I11 and 40 cycles in case I1 (which give the same total 
time of the piston motion), we find from figure 4 that though the piston speed is 
the same in both cases the pressure rise across the shock and pressure in the 
region behind the shock is everywhere much smaller in case I1 than in case 111. 
This clearly brings out the damping effect of the sphericity. The pressure at  
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the piston after 40 cycles for case I1 shows decrease with time and it is surmised 
that, after sufficiently large time, it will tend to that predicted by Yeh (1962), 
though we could not obtain the solution for larger time, because of the lirnita- 
tions of the computer. 

Now we consider the effect of the initial curvature of the piston path, given 
by different values of E for the same value of El.  The initial curvature is larger 

0.24 I 
0.22 

0.20 

0.18 

0.16 

0.14 

0.12 
U 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

FIGURE 2. Velocity versus Lagrangian distance at various cycles (case I). 

in case I11 than that in case IV. The curves in figure 5, giving the pressure dis- 
tribution after 30 cycles for case I11 and after 40 cycles for case IV (which corres- 
pond to the same total time of the piston motion) show that the shock is stronger 
in case I11 than that in case IV. Similarly, when the piston velocity is the same 
for case I11 and case IV after 40 cycles and 110 cycles respectively, the shock is 
stronger in case I11 than that in case IV. Of course, the disturbance has traversed 
a much larger distance in case IV. 

In case V where the piston motion is supersonic (El > l), the computer 
was run for 200 cycles and the distribution of the flow variables is shown in 

38 Fluid Mech. 39 
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figures 6 and 7. We find that the radius of the piston (Eulerian distance) is 1.576 
and 2.176 times its initial radius after 120 cycles and 200 cycles respectively 
(figure 7).  At a given time, the specific volume is almost constant, the variation 
of pressure is small and the velocity varies rapidly with Lagrangian distance 
in the region behind the shock. 

0.7 I I I I I I I I I 

1 . O ~  

0.9 

V 

1 
o.8 t 

-====----- ----_ 
.s 0 

cu 3 -  
+3 UI 

3 

0 

.3 

w 
1 -  

18 10 12 0 2 4 6 8 

2 - X; in units of 10-5 

FIGURE 4. Pressure vermg Lagrangian d-tance showing the effect of the initial position 
of the piston X i  (cases I1 and 111). 

In cases VI, VII and VIII, the piston starts with a sonic velocity (?Zz = 1)  
so that in the beginning a strong shock wave of Mach number 2.8397 is produced. 
The deceleration of the piston starts after time 7.04 x 10-6 and the variation of 
pressure, particle velocity and Eulerian position of the fluid particles have been 
shown graphically in figures 7 to 9 a t  various cycles. The dotted curves (n = 0) 
in figures 8 and 9 give the initial distributions of pressure and velocity and are 
common for all three cases VI, VII and VIII. The shock strength decays owing 



Spherical piston problem in water 595 

to the deceleration of the piston and this decay is very pronounced and rapid 
in case VIII. In  case VI, the pressure is almost constant from the piston to 
the shock at  the 260th cycle but the velocity monotonically decreases. In case 

4 

e 

2 
r , 3  
0 
rn 
Y 

3 2 
G 

R 
.* 

1 

0 
0 4 8 12 16 20 24 28 32 

z - 2; in units of 10-6 

FIGURE 5. Pressure vemu8 Lagrangian distance showing the effect of the curvature of 
the piston path in 2, t plane (cases I11 and IV). 
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FIGURE 6.  Velocity, pressure and specific volume veraua Lagrangian distance 
at various cycles (case V). 

VIII, the piston comes to rest as t tends to infinity and the deceleration is so 
large that pressure becomes zero at  the piston when n = 70 and after that a 
cavity is formed between the piston and the water. 

38-2 
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The particle velocity monotonically increases from the piston to the shock 
for case VIII. As we go from case VI I I  to case VI through case VII, the 
deceleration of the piston decreases and the variation of velocity from piston 
to shock is less pronounced and for the same case, say VI, the approach of the 

I .8 

1.6 

1.4 

1.2 
I 

2 
% 1.0 

g 0.8 

rn 
+a 
.A 

F: 
.M 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

z in units of 10-3 

FIGURE 7. Eulerian distance veraus Lagrangian distance (cases V, VI and VII). 
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FIGURE 8. Pressure versus Lagrengian distance showing the effect of deceleration of the 
piston (cases VI, VII and VIII). 
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0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 

2-Z; in units of 10-5 

FIGURE 9. Particle velooity versus Lagrangian distance showing the effect of deceleration 
of the piston (oases VI, VII and VIII). 

7 
A 

0 1 2 3 4 5 6 

t in units of 

FIGURE 10. Piston and cavity paths in X ,  t plane. ABCE, piston path; CD, cavity path. 
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particle velocity to the limiting velocity distribution as t tends to infinity is more 
rapid than the approach of the pressure to the limiting pressure distribution. 
To study the approach of pressure to the limiting pressure distribution in each 
case, integration over a larger number of cycles is needed, but this study does not 
seem to yield any significant information so we did not undertake further 
computation. 

Motion of the cavity 

Figures 10 and 11 show the piston and cavity paths in the x, t plane and the 
distribution of velocity behind the shock at  different cycles respectively for the 
case VII I  of a decelerating piston in which a cavity is formed at  n = 70. 

1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

x; 
1-03301 x 
1.04250 x 
1.05173 x 
1.06067 x 
1.06940 x 
1.07800 x 
1.08644 x 
1.09476 x 10-3 
1-10300 x 

1.11899 x 
1.12697 x 
1.13490 x 
1-14258 x 
1.15037 x lob3 
1-15793 x 
1-16562 x 10" 
1.17312 x lo-* 
1-18105 x 
1.19014 x 
1~20000 x 10-8 

1.11109 x 10-3 

1.21000 x 10-3 

U;-* 
1.08202 x lo-' 
1.18022 x 10-1 
1.40707 x 10-1 
1.64353 x 10-1 
1.88968 x 10-1 
2.14982 x 10-1 
2.40001 x 10-1 
2-57700 x 10-1 
2.77029 x 10-' 
3.24139 x lo-' 
3-38590 x lo-' 
3.16249 x 10-' 
3.86947 x 10-1 
3.85529 x 10-' 
4.18121 x 10-1 
4-31711 x 10-1 
4.42407 x 10-1 
4-58810 x lo-' 
2.65212 x 10-1 
6.04749 x 
2.48106 x 
3.32335 x 

I+; 
0-5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7-5 
8-5 
9-5 

10.5 
11-5 
12.5 
13.5 
14.5 
15-5 
16-5 
17.5 
18.5 
19.5 
20.5 
21.5 

"A, 
1.000050 
0.975765 
0.951479 
0.929149 
0.907999 
0.888035 
0.87 1849 
0.860790 
0-843086 
0.818369 
0.824086 
0.810313 
0.787155 
0.794348 
0.768288 
0.7 78 159 
0.755397 
0.796471 
0.909804 
0.986179 
0.999567 
0.999994 

ZT+ * 
0 

5.63283 x loa  
1.25080 x loa  
2.01961 x lo3 
2.89840 x lo3 
3.89057 x lo3 
4.83750 x lo3 
5.57011 x lo3 
6.91204 x lo3 
9.20733 x lo3 
8.72673 x lo3 
9.42420 x lo3 
1.30267 x lo4 
1.20380 x lo4 
1.59932 x lo4 
1.43695 x lo4 
1-83815 x lo4 
1.17597 x lo4 
2.81608 x lo3 
3.08070 x loa 
1.01210 x 10 
1.11592 

TABLE 2. Distribution of flow variables (case VIII) when a cavity appears 
at n = 70 in the flow 

We have followed the motion of the cavity by imposing the boundary condition 
that the pressure at the cavity is zero and therefore the specific volume at the 
cavity is (J/E)l/y. This gives us the boundary conditions 

instead of conditions (3.13) at the piston. Equations (3.9) and (3.10) are iter- 
atively solved for cavity position Xt+' and cavity velocity U;+i satisfying the 
above boundary conditions. We have neglected the small vapour pressure within 
the cavity. 

Figure 10 shows that the piston gets detached from the fluid at n, = 70 and 
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then decelerates to rest while the cavity wall moves away from the piston. 
Up to n = 550 the cavity continues to move away from the piston and we pre- 
sume that finally it comes to rest and moves back to collide with the piston. 
However, we have not carried out integrations for this phase of cavity motion. 
Table 2 gives the distribution of flow and physical variables behind the shock at 

1 .o 

0.8 

0.6 

U 
0.4 

0.2 

0 
0 10 20 30 40 50 60 70 80 90 100 

Z - Z ~  in units of 10-5 

FIGURE 11. Particle velocity verma Lagrangian distance for case VIII (with a 
cavity after ~t = 70). 

I + &  
0.5 
5.5 

10.5 
15.5 
19.5 
20-5 
25.5 
30.5 
35.5 
40.5 
45.5 
50.5 
55.5 
59.5 
60.5 
65.5 
70.5 
75.5 
80.5 
85.5 
90.5 
95.5 

TABLE 3. 

~t = 70 n = 150 n = 350 n = 550 

0 0 0 0 
3,891 231 55 23 
8,626 710 106 43 

14,370 2,424 168 65 
28,161t ... ... ... 

10 4,421 220 87 
1 7,437 333 113 
1 10,558t 385 150 
1 1 896 167 
1 1 1,558 210 
1 1 2,051 268 
1 1 3,182 325 
1 1 3,574 520 

1 1 4,245 886 
1 1 1 1,215 
1 1 1 1,496 
1 1 1 2,304 
1 1 1 2,530 
1 1 1 3,573t 
1 1 1 4 
1 1 1 1 

1 1 5,311t ... 

t Represents the position of the shock. 

Distribution of pressure (case VIII) at various cycles 
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the instant of cavity formation, i.e. when n = 70. Table 3 shows the distribution 
of pressure behind the shock at  n = 70,  150, 350, 550. We find that the pressure 
in the fluid in the neighbourhood of the cavity is of the order of a few atmospheres 
while it is zero at the boundary of the cavity. Figure 11 shows that the velocity 
is no longer monotonic but has a minimum value between the cavity wall and the 
shock. 

The authors express their thanks to Mr S. S. Krishna Murthy who carried out 
the complicated programming of this problem on the CDC 3600 computer at 
TIFR, Bombay. 
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